On the maximum principle preserving schemes for the generalized Allen–Cahn equation
نویسندگان
چکیده
منابع مشابه
On the maximum principle preserving schemes for the generalized Allen-Cahn Equation
This paper is concerned with the generalized Allen-Cahn equation with a nonlinear mobility that can degenerate, which also includes an advection term as found in phase-field models. A class of maximum principle preserving schemes will be studied for the generalized Allen-Cahn equation, with either the commonly used polynomial free energy or the logarithmic free energy, and with a nonlinear dege...
متن کاملVariational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves
The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...
متن کامل“the effect of risk aversion on the demand for life insurance: the case of iranian life insurance market”
abstract: about 60% of total premium of insurance industry is pertained?to life policies in the world; while the life insurance total premium in iran is less than 6% of total premium in insurance industry in 2008 (sigma, no 3/2009). among the reasons that discourage the life insurance industry is the problem of adverse selection. adverse selection theory describes a situation where the inf...
15 صفحه اولConstruction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle
We present a method to approximate (in any space dimension) diffusion equations with schemes having a specific structure; this structure ensures that the discrete local maximum and minimum principles are respected, and that no spurious oscillations appear in the solutions. When applied in a transient setting on models of concentration equations, it guaranties in particular that the approximate ...
متن کاملMaximum principle preserving high order schemes for convection-dominated diffusion equations
The maximum principle is an important property of solutions to PDE. Correspondingly, it’s of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Sciences
سال: 2016
ISSN: 1539-6746,1945-0796
DOI: 10.4310/cms.2016.v14.n6.a3